Vertica Analytics Platform is a data warehouse management system optimized for large-scale, rapidly-growing datasets. By using a column-oriented architecture (instead of row-oriented), Vertica can offer high-speed query performance for your business intelligence, machine learning, and other query-intensive systems. Vertica is compatible with a variety of cloud data warehouse servers such as Google Cloud Platform, Amazon Elastic Compute Cloud, Microsoft Azure, and on-premises. The platform also offers its "Eon Mode," which achieves optimum performance by separating computational processes from storage processes. Eon Mode is available when hosting the platform on AWS or when using Pure Storage Flashblade on-premises. Vertica is an open-source product that is free to use up to certain data limitations.
As a business intelligence solution, Jaspersoft empowers developers to integrate 'pixel-perfect' data visualizations and presentations within their applications. Because of its customization features, Jaspersoft is a developer-friendly reporting and analytics platform that simplifies the process of getting the answers you want within your preferred applications. The platform is scalable both economically and architecturally for the widest reach possible.
Bring all your Jaspersoft data to Amazon Redshift
Load your Jaspersoft data to Google BigQuery
ETL all your Jaspersoft data to Snowflake
Move your Jaspersoft data to MySQL
Through its MPP architecture, Vertica distributes requests across different nodes. This brings the benefit of virtually unlimited linear scalability.
Veritica's column-oriented storage architecture provides faster query performance when managing access to sequential records. This advantage also has the adverse effect of slowing down normal transactional queries like updates, deletes, and single record retrieval.
With its workload management features, Vertica allows you to automate server recovery, data replication, storage optimization, and query performance tuning.
Vertica includes a number of machine learning features in-database. These include 'categorization, fitting, and prediction,' which bypasses down-sampling and data movement for faster processing speed. There are also algorithms for logistic regression, linear regression, Naive Bayes classification, k-means clustering, vector machine regression/classification, random forest decision trees, and more.
Through its SQL-based interface, Vertica provides developers with a number of in-built data analytics features such as event-based windowing/sessionization, time-series gap filling, event series joins, pattern matching, geospatial analysis, and statistical computation.
Vertica's SQL based interface makes the platform easy to use for the widest range of developers.
Vertica's shared-nothing architecture is a strategy that lowers system contention among shared resources. This offers the benefit of slowly lowering system performance when there is a hardware failure.
Vertica batches updates to the main store. It also saves columns of homogenous data types in the same place. This helps Vertica achieve high compression for greater processing speeds.
Vertica features native integrations for a variety of large-volume data tools. For example, Vertica includes a native integration for Apache Spark, which is a general-purpose distributed data processing engine. It also includes an integration for Apache Kafka, which is a messaging system for large-volume stream processing, metrics collection/monitoring, website activity tracking, log aggregation, data ingestion, and real-time analytics.
Vertica runs on a variety of cloud-based platforms including Google Cloud Platform, Microsoft Azure, Amazon Elastic Compute Cloud, and on-premises. It can also run natively using Hadoop Nodes.
Vertica is compatible with the most popular programming interfaces such as OLEDB, ADO.NET, ODBC, and JDBC.
A large number of data visualization, business intelligence, and ETL (extract, transform, load) tools offer integrations for Vertica Analytics Platform. For example, Integrate.io's ETL-as-a-service tool offers a native integration to connect with Vertica.
Jaspersoft's reporting features compile data from multiple sources to present it with beautiful, accessible visuals. The platform allows you to design 'pixel-perfect,' interactive reports that you can print, display on the web, or access from any mobile device.
Jaspersoft's data analysis tools offer advanced visualizations, modeling, and manipulation features that empower you to identify problems and find trends. Analyze and explore any kind of data with either in-memory or OLAP analysis for better, faster decision-making.
Jaspersoft's dashboarding features support multi-report dashboards that incorporate internal and external information. The dashboard tools synthesize data and graphics to provide easy-to-understand, up-to-date information summaries.
Jaspersoft's advanced ETL (extract, transform, load) features pull data from multiple sources into your data warehouses and/or data marts for analytics purposes. Aided by connectivity to ERP and CRM platforms like SugarCRM, SAP, and Salesforce, Jaspersoft also includes support for transactional databases, analytical databases, mainframe databases, and big data solutions like Hive. Jaspersoft leverages all of your data sources, both relational and non-relational, for deep insights and reporting.
Visualize.js gives you maximum control and scalability when embedding visualizations and reports into your applications. For this reason, Jaspersoft claims to be 'the only embedded BI tool that works the way developers think.'
Jaspersoft's security and compliance features allow you to define who has access to analyses and reports at the row and cell level for maximum security and compliance. It also includes auditing and monitoring services for detailed performance and compliance-related metrics. Moreover, Jaspersoft is compatible with third-party ID management services through its SSO (single sign-on) support with a customizable API.